Thursday, 27 March 2025

Huawei 6720 Switch PBR Configuration

Note=The below configuration will not check the local routing table and it will forward all traffic to that nexthop..! 


[6720]acl number 3100

[6720-acl-adv-3100]rule 10 permit ip source 10.14.7.0 0.0.0.255



[6720]traffic classifier ABC

[6720-classifier-ABC]if-match acl 3100



[6720]traffic behavior ABC

[6720-behavior-ABC]redirect ip-nexthop 10.70.29.19



[6720]traffic policy ABC

Info: If the traffic policy has been applied to board, making modifications that are not supported by the board on the traffic policy may cause the failure to apply this traffic policy.

[6720-trafficpolicy-ABC]classifier ABC behavior ABC



[6720]traffic-policy ABC global inbound


Even if you configure it on interface still it will not check the local routing table and will forward all the traffic to that nexthop.



[6720]interface XGigabitEthernet 0/0/11

[6720-XGigabitEthernet0/0/11] traffic-policy ABC inbound


Here , i want that when there is a route not present in the routing table in that case the traffic will be forwarded to the nexthop only so i configured the acl to check the default route only..!


[6720]acl number 3100

[6720-acl-adv-3100]rule 10 permit ip source 110.14.7.0 0.0.0.255 destination 0.0.0.0 0.0.0.0


[6720]traffic-policy ABC global inbound

Interface Based PBR Configuration in Huawei Switch & Router..!

Policy-based routing PBR

Let’s assume that we have topology like this:

What we have to do is to force router CX_1 to choose interface G7/5/0 and next hop 10.0.2.2 to forward traffic from source IP 5.5.5.5 to destination IP 15.15.15.15. Rest of traffic should go through interface G7/5/7.

Configure IP addresses based on this topology.

Use OSPF protocol to ensure communication in tested network. Let’s take CX_1 as an example:

#
ospf 1 router-id 6.6.6.6
 area 0.0.0.0
  network 10.0.1.0 0.0.0.3
  network 10.0.2.0 0.0.0.3
  network 10.0.0.0 0.0.0.3
  network 6.6.6.6 0.0.0.0
#

Configure OSPF for the remaining routers.

Increase OSPF cost of one of the links between CX_1 and CX_2 to exclude load-balancing:

#
interface GigabitEthernet7/5/0
 ospf cost 100
#

Display routing-table of AR29 to check if all necessary subnets are available through OSPF (display ip routing-table).

Configure ACL on CX_1 which permits IP source 5.5.5.5 to send packets to destination IP 15.15.15.15:

[CX_1]acl number 3000
[CX_1-acl-3000}rule 5 permit ip source 5.5.5.5 0.0.0.0

Configure traffic classifier and traffic behavior for classified packets:

#
traffic classifier ABC
if-match acl 3000 # traffic behavior ABC
redirect ip-nexthop 10.0.2.2 interface GigabitEthernet7/5/0 #

Configure traffic policy and assign it to interface G7/5/5 as inbound:

#
traffic policy ABC
 statistics enable
 classifier ABC behavior ABC
# interface GigabitEthernet7/5/5 traffic-policy ABC inbound
#

Let’s check now what the result of such traffic policy is. On AR29 router we can use tracert command to check how traffic is going to 15.15.15.15.

<AR29>tracert -a 5.5.5.5 15.15.15.15
 traceroute to  15.15.15.15(15.15.15.15), max hops: 30, packet length: 40, press CTRL_C to break
1   10.0.0.1 4 ms  2 ms  7 ms
2   10.0.2.2 3 ms  4 ms  5 ms

As we can see traffic policy is working correctly choosing 10.0.2.2 as the IP next hop.

Now we can try the same but without source IP 5.5.5.5:

<AR29>tracert 15.15.15.15
 traceroute to  15.15.15.15(15.15.15.15), max hops: 30, packet length: 40, press CTRL_C to break
1   10.0.0.1 3 ms  1 ms  1 ms
2   10.0.1.2 3 ms  2 ms  2 ms

We can see that policy-based routing is working properly for traffic classified in ACL 3000. Rest of traffic is choosing a route based on IP routing table.

We can also check statistics for this traffic policy. We can use ping for such purposes. Use ping from AR29 and check statistics on CX_1:

<AR29>ping -a 5.5.5.5 -c 100 -m 100 15.15.15.15
<CX_1>display traffic policy statistics interface g 7/5/5 inbound
Info: The statistics is shared because the policy is shared.
Interface: GigabitEthernet7/5/5
Traffic policy inbound: labnario
Traffic policy applied at 2012-02-06 16:15:04
Statistics enabled at 2012-02-06 16:15:16
Statistics last cleared: 2012-02-06 20:14:59
Rule number: 4 IPv4, 0 IPv6
Current status: OK!
Item                             Packets                      Bytes
-------------------------------------------------------------------
Matched                              100                     10,200
  +--Passed                          100                     10,200
  +--Dropped                           0                          0
    +--Filter                          0                          0
    +--URPF                            0                          0
    +--CAR                             0                          0
Missed                                19                      2,640
Last 30 seconds rate
Item                                 pps                        bps
-------------------------------------------------------------------
Matched                                0                          0
  +--Passed                            0                          0
  +--Dropped                           0                          0
    +--Filter                          0                          0
    +--URPF                            0                          0
    +--CAR                             0                          0
Missed                                 0                        288
<AR29>ping -c 100 -m 100 15.15.15.15
<CX_1>dis traffic policy statistics interface g 7/5/5 inbound
Info: The statistics is shared because the policy is shared.
Interface: GigabitEthernet7/5/5
Traffic policy inbound: labnario
Traffic policy applied at 2012-02-06 16:15:04
Statistics enabled at 2012-02-06 16:15:16
Statistics last cleared: 2012-02-06 20:14:59
Rule number: 4 IPv4, 0 IPv6
Current status: OK!
Item                             Packets                      Bytes
-------------------------------------------------------------------
Matched                              100                     10,200
  +--Passed                          100                     10,200
  +--Dropped                           0                          0
    +--Filter                          0                          0
    +--URPF                            0                          0
    +--CAR                             0                          0
Missed                               126                     13,956
Last 30 seconds rate
Item                                 pps                        bps
-------------------------------------------------------------------
Matched                                0                          0
  +--Passed                            0                          0
  +--Dropped                           0                          0
    +--Filter                          0                          0
    +--URPF                            0                          0
    +--CAR                             0                          0
Missed                                 3                      2,648

You can also configure policy-based routing in MPLS L3VPN to allow some IP traffic (based on ACL) from one VPN to be redirected to another VPN. Maybe I will show you such configuration in the future.

Interface Based PBR Configuration in Huawei router..!




Step 1: As we verified the connectivity between PCs and the path taken by the traffic from PC2 to PC4 and PC3 to PC5.

Traffic from PC2 to PC4 passes through R4
Traffic from PC3 to PC5 also passes through R4.

The objective of this lab is to use Policy based routing to ensure traffic from PC2 to PC4 passes through R4 while traffic from PC3 to PC5 passes through R5.


Step 2: Configure ACLs to match traffic from PC2 and PC3 as follows on R3. We use extended ACLs to be able to match the source IP addresses.

***************************R3
#
acl number 3000
 rule 5 permit ip source 40.40.40.0 0.0.0.1
#
acl number 3002
 rule 5 permit ip source 50.50.50.0 0.0.0.1
#

Step 3: Configure PBR and apply it on the interfaces facing PCs on R3.

**************************R3
#
policy-based-route TEST_PBR permit node 5
 if-match acl 3000
 apply output-interface Serial0/0/0
policy-based-route TEST_PBR permit node 10
 if-match acl 3002
 apply output-interface Serial0/0/1
#
interface Ethernet0/0/0
 ip policy-based-route TEST_PBR
#
interface Ethernet0/0/1
 ip policy-based-route TEST_PBR
#

Step 4: Verify the path taken by traffic from PC2 and PC3.

Traffic from PC3 now follows the path through R5 and R7.

Note: The PBR configured on R3 doe not affect the path for the return traffic from PC4 and PC5. You must configure same PBR on R6 to be able to control the flow of the return traffic.

Return traffic from PC5 still goes through R4.

This is how you can use PBR to control traffic flow in your network. Thank You for reading and please leave your comments below. Check out other related articles on our page. 

HUawei Global PBR Configuration in Switch...!

 Traffic routing with Policy-based routing (PBR)

Packet routing is generally carried out by equipment by consulting its routing table where they look for the best routes based on their destination address.


However, what I intend to show is that there are other forms of packet routing, such as PBR, which allows routes to be changed based on other criteria such as source addresses, packet size or next hop.

 

To show one of the ways to configure packet forwarding based on PBR, I will use an example:

 

In the company we have two departments that have different access to the Internet due to the needs of the IT Team who need better access to the Internet. What we are going to show is a way to configure the routing of each network for its Internet access, and both teams access the DMZ and can also communicate with each other.

 

qrwrqr

 

 

The first step will be to carefully configure an ACL to select only the traffic we want to redirect. As we want to redirect all traffic destined for the Internet, we make the following configuration:

 

ACL name IT_TEAM number 3001

rule 10 permit ip source 192.168.0.0 0.0.0.255 destination any

rule 15 permit ip source 192.168.1.0 0.0.0.255 destination any

 #

ACL Name COM_TEAM number 3002

rule 10 permit ip source 192.168.2.0 0.0.0.255 destination any

rule 15 permit ip source 192.168.3.0 0.0.0.255 destination any 

 

After defining the ACLs, they configured the traffic classifiers

 

traffic classifier TC_IT_TEAM type or

  if-match acl 3001

 #

traffic classifier TC_COM_TEAM type or

  if-match acl 3002

 

 

The next step was to choose what to do with the traffic they had just categorized.

 

traffic behavior TB_IT_TEAM

redirect nexthop 192.168.0.147

 #

traffic behavior TB_COM_TEAM

redirect nexthop 192.168.0.149

 

As you know after the classifier and traffic behavior are configured they need to be put together to make sense. And that's what they did too.

 

traffic policy TP_IT_TEAM

classifier TC_IT_TEAM behavior TB_IT_TEAM

#

traffic policy TP_COM_TEAM

classifier TC_COM_TEAM behavior TB_COM_TEAM

 

Finally, the traffic policies were configured. The only thing left to do was to apply the traffic policies on the switch.

 

traffic-policy TP_IT_TEAM global inbound

#

traffic-policy TP_COM_TEAM global inbound

 

After that, traffic destined for the internet was redirected according to the policy.